
Hypothesis Testing Cheat Sheet 
Basic Idea: 
How to decide if it is reasonable to conclude that an underlying true parameter (e.g. 𝛽 in a 

regression model 𝑦 = 𝛽0 + 𝛽𝑥 + 𝜖) is equal to a particular value ℎ0 on the basis of an estimate �̂�? 

We call this a hypothesis about 𝛽 and call it the Null Hypothesis,  

H0: 𝛽 = ℎ0. 

We also take note of what must be the case if H0 is not true. This is called the Alternative Hypothesis 

written as  

H1: 𝛽 ≠ ℎ0 

 

We will reject H0 (i.e. conclude that  𝛽 is probably not equal to ℎ0) if the estimate �̂� is quite far away 

from ℎ0 (i.e. if �̂� is either much bigger or much smaller than ℎ0).  

 

But how far is too far exactly? Or in terms of the figure above: how big is 𝑐? This depends on the 

reliability of the estimate �̂�. If we know that the estimate is imprecise – i.e. there is a high likelihood 

that  �̂� is very far away from ℎ0 even if H0 is true, then we would tolerate higher values for c.  

With the Monte-Carlo Analysis we have seen that  

• �̂� is (approximately) normally distributed 

• The estimate is more precise (i.e. the standard error 𝜎�̂� is smaller) if the variance of the 

error (𝜎𝜖
2 ) is smaller or the variance of the explanatory variable x is larger. 

 

After running a regression it is possible to estimate  𝜎�̂� (i.e. we can label this estimate �̂��̂�) and R 

provides this estimate as part of its regression output. Here is an example: 

 

df=read_dta("../data/foreigners.dta") 

  

 df['crimesPc']=df$crimes11/df$pop11 

 reg1=lm(crimesPc~b_migr11,df) 

 summary(reg1) 

##  

## Call: 

## lm(formula = crimesPc ~ b_migr11, data = df) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

�̂�ℎ0 ℎ0 + 𝑐

Accept hypothesis Reject hypothesisReject hypothesis

ℎ0  𝑐



## -1.5886 -0.3789 -0.1038  0.2046 14.0988  

##  

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept) 0.992957   0.079387  12.508  < 2e-16 *** 

## b_migr11    0.037630   0.005088   7.396 1.23e-12 *** 

## --- 

 

 

 

Hence, we can use the bell-shaped normal distribution (with mean ℎ0  and standard error �̂��̂� ; i.e. 

𝑁(ℎ0, �̂��̂�) ) to work out the likelihood is for �̂� to fall in the rejection area even though it is true; i.e. it 

is the combined area under the bell curve in the tails of the distribution for a given c.  

 

 

Equally we can work out which 𝑐 goes along with a given desired probability. This latter approach is 

what we do in hypothesis testing. We decide first what probability (i.e. risk that we reject the 

hypothesis even though it is correct) we find acceptable (e.g. 1%, 5% or 10%) and we then work out 

the relevant c. Those risk levels are also referred to as significance levels. 

Implementation 
It turns out that instead of working out the c for a given distribution 𝑁(ℎ0, �̂��̂�) it’s sufficient to work 

out the relevant threshold numbers only once for the Standard Normal Distribution 𝑁(0, 1). The 

reason for this that an estimate that is Normally distributed can always be converted into one that is 

Standard Normally distributed by subtracting its expected value and dividing by its standard error; 

i.e. by computing 

𝑧 =
�̂�  ℎ0
𝜎𝛽

 

Thus, we can compare 𝑧 to the thresholds for the standard normal distribution. To find those in turn 

we can use the qnorm() R-function which is the inverse of the cumulative density function. You have 

to provide qnorm with a probability (e.g. 0.025) and it will tell you for which value 𝑐𝑧 the left tail of 

the normal distribution will correspond to that probability 

�̂�ℎ0  ℎ0  𝑐 ℎ0 + 𝑐

Estimate of standard error for slope parameter 



 
 

qnorm(0.025)  =   -1.959964 

Similarly, we can find the thresholds for other possible significance levels  

qnorm(0.005)  =   -2.575829 for 1% 

qnorm(0.05)   =   -1.644854 for 10% 

 

So if we find a �̂�=0.037630  (as in the example above) and 𝜎�̂� = 0.005088 and we are testing the 

hypothesis that 𝛽 could be zero (H0: 𝛽 = 0) we need to check if 
0.037630−0

0.005008
= 7.513978 is within the 

interval implied by those values (i.e. in this case we would reject the hypothesis even if we only 

allowed for a small significance level). 

What about t-statistics? 
The so-called t statistic is like the z value above except that we now allow the standard error to be 

estimated as well: 

𝑡 =
�̂�  ℎ0
𝜎�̂�

 

Hence, because in practice we never know 𝜎𝛽 this is what we compute in practice. As a 

consequence, rather than being Standard Normally distributed, t is t distributed. Luckily this does 

not matter much in practice because the t distribution is almost identical to the standard normal 

distribution, provided our sample is large enough; e.g. at 12 observations the 5% threshold value 

would be 2.228. However, at 100 observations the threshold is -1.984467; i.e. fairly close to the 1.96 

found with the normal distribution. You can work this out with the qt(0.025, 98) command where 

the second number refers to the degrees of freedom; i.e. the number of observations minus the 

number of parameters in your model (i.e. 2 in our case: intercept and slope). 

P-values 
An even simpler way of doing the same thing (i.e. hypothesis test) involves P values. In the past 

without computers this was hard but now this is easy. P values for the hypothesis test H0: 𝛽 = 0 are 

routinely reported along with regression output; e.g. in R it’s the values in the column Pr(>|t|). 

The P value is the significance level you would have to choose if the value you estimated was equal 

to the rejection threshold; i.e. |�̂�  ℎ0| = 𝑐. Hence, thus if P is very small (smaller than your desired 

significance level) then you would reject the hypothesis. If it is rather large (larger than your desired 

significance level) than you don’t reject your hypothesis. 

𝑧0  𝑐𝑧

e.g. 2.5%



You can get P-values for tests other than H0: 𝛽 = 0 using the linearHypothesis command (part of 

library(“car”)). 

For example if you wanted to check if the migration coefficient in the example above is equal to 0.04 

you could run the command 

 

linearHypothesis(reg1, c( "b_migr11= 0.04") ) 

Linear hypothesis test 
 
Hypothesis: 
b_migr11 = 0.04 
 
Model 1: restricted model 
Model 2: crimesPc ~ b_migr11 
 
  Res.Df    RSS Df Sum of Sq     F Pr(>F) 
1    323 301.53                           
2    322 301.33  1   0.20309 0.217 0.6416 
 

Large P-Value (much 

larger than 10%) 

suggests we don’t want 

to reject this. 


